Uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by preventing the activation of PI3K/Akt in MC3T3-E1 cells.

2016 
Abstract Uncarboxylated osteocalcin, an osteoblast-derived protein, plays an important role in the regulation of glucose metabolism. It has previously been demonstrated that high glucose levels inhibit osteoblast proliferation and differentiation. However, the mechanisms through which uncarboxylated osteocalcin regulates osteoblast proliferation and differentiation under high glucose conditions remain unclear. Thus, in the present study, we aimed to examine the effects of uncarboxylated osteocalcin on the proliferation and differentiation of MC3T3-E1 cells under high glucose conditions. We demonstrated that high glucose levels induced the production of reactive oxygen species (ROS) in MC3T3-E1 cells, and this production was inhibited by treatment with uncarboxylated osteocalcin and N-acetyl-L-cysteine (NAC), a ROS scavenger. In addition, we found that uncarboxylated osteocalcin reduced high glucose‑induced oxidative stress and increased the mRNA expression of the osteogenic markers, runt-related transcription factor 2 (Runx2), osterix and osteocalcin, as well as the formation of mineralized nodules; it also inhibited adipogenic differentiation, as shown by a decrease in the mRNA expression of the adipogenic markers, peroxisome proliferator‑activated receptor γ (PPARγ), adipocyte fatty acid-binding protein (adipocyte protein 2; aP2) and fatty acid synthase (FAS), and reduced lipid drop accumulation. Furthermore, we found that uncarboxylated osteocalcin inhibited PI3K/Akt signaling which was induced by ROS and facilitated the osteogenic differentiation of MC3T3-E1 cells under high glucose conditions. Taken together and to the best of ou knowledge, our results demonstrate for the first time that uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by inhibiting the activation of PI3K/Akt in MC3T3-E1 cells. Therefore, we suggest that uncarboxylated osteocalcin may be a potential therapeutic agent for diabetes-related osteoporosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    14
    Citations
    NaN
    KQI
    []