Genetic and phenotypic characterization of tetracycline-resistant Pasteurella multocida isolated from pigs

2019 
Abstract Pasteurella multocida causes single or complex respiratory disease in pigs. Although antimicrobial therapy is the most effective treatment for porcine respiratory disease, P. multocida shows increased antimicrobial resistance in Korea. Therefore, we aimed to investigate the phenotypic and genotypic characterization of tetracycline-resistant P. multocida . Thirty-seven of 454 P. multocida isolates from South Korea between 2010 and 2016 were selected. Four tet genes [ tet (B) (78.4%), tet (H) (16.2%), tet (C) (5.4%), and tet (O) (2.7%)] were observed. This is the first report of tet (C) in P. multocida . Various virulence factors were observed in both tetracycline-resistant and -susceptible P. multocida isolates. Genes encoding pmHAS and pfhA were more prevalent in tetracycline-resistant than in tetracycline-susceptible isolates. Some virulence factors exhibited association with serogroups. tadD and sodA were common in serogroup A, while hsf-l was significantly associated with serogroup D (p  P. multocida . MLST showed six different sequence types (ST), with clonal complex 13 encompassing 56.8% of the strains. PFGE was more efficient in differentiating the isolates, and 29 PFGE patterns of the strains were observed. By combining these methods, identical STs and PFGE patterns were observed in isolates from different farms, suggesting that transmission of antimicrobial-resistant P. multocida strains between farms might occur in a geographically discrete population. In future, epidemiological approaches and development of effective vaccines should focus on the major clonal lineages carrying the important virulence factors and frequently observed resistance genes to prevent the transmission and control the disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    3
    Citations
    NaN
    KQI
    []