Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors

2021 
Tuning of porosity and surface properties of nanoparticles especially on carbon-based nanomaterials, adopting a ‘greener’ or self-activation synthesis technique for electrical charge storage, is progressing. Herein, we report the self-activation of Teak wood sawdust in a nitrogen atmosphere at different activation temperatures to synthesize carbon nanoparticles. The activated carbon nanoparticles synthesized at 900 °C exhibits a maximum ~ 360 m2 g−1 surface area with ~ 2 nm average pore size diameter. Five electrolytes viz. KOH, KCl, Na2SO4, NaCl, and H3PO4 are used for studying the supercapacitance nature of the activated carbon nanoparticles in a 3-electrode configuration. A maximum specific capacitance of ~ 208 F g−1 @ 0.25 A g−1 is obtained in 1 M KOH as the electrolyte. Two symmetric supercapacitors, aqueous (1 M KOH) and solid-state (PVA/KOH), are fabricated, and their performance difference is compiled. The solid-state symmetric supercapacitor performs in a wider voltage window (1.7 V) with a superior energy density of 27.1 Wh kg−1 at a power density of 178 W kg−1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    4
    Citations
    NaN
    KQI
    []