A Method to Extrapolate the Diffuse Upwelling Radiance Attenuation Coefficient to the Surface as Applied to the Marine Optical Buoy (MOBY)

2017 
AbstractThe upwelling radiance attenuation coefficient KLu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance Lu at 1, 5, and 9 m, and uses these values to determine KLu and to propagate the upwelling radiance directed toward the zenith, Lu, at 1 m to and through the surface. Inelastic scattering causes the KLu derived from the measurements to be an underestimate of the true KLu from 1 m to the surface at wavelengths greater than 575 nm; thus, the derived water-leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this KLu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence, has been developed that corrects this bias. The model has been experimentally validated, and thi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    8
    Citations
    NaN
    KQI
    []