Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation

2019 
Abstract Over the course of evolution, nature has forced organisms under selection pressure to hardwire an internal time keeping device that defines 24 h of a daily cycle of physiological and behavioral rhythms, known as circadian rhythms. At the cellular level, the cycle is governed by significant fractions of transcriptomes, which are under the control of transcriptional and translational feedback loop of clock genes. Intriguingly, this feedback loop is regulated at multiple stratums such as at the transcriptional and translational levels, which direct a cell towards producing a robust rhythm by sustaining the repeated stoichiometry of protein products. Moreover, with the advent of state of the art paradigms, epigenetic regulation of circadian rhythms has been becoming more evident at present time. Light-induced recurring fluctuations in chromatin acetylation concurrent with the binding of RNA Pol II and integration of miRNAs monitor the chromatin modifiers or clock genes expression to drive temporal rhythmicity. Furthermore, CLOCK protein intrinsic histone acetyl transferase activity, the interaction of CLOCK-BMAL-1 with HAT enzymes, and the involvement of many histone deacetylases also maintain the rhythmic protein profile. Additionally, the critical role of the rhythmic methylation pattern of clock genes in battery of cancer and metabolic disorders also defines its importance. Therefore, in this review, we focused on accumulating all the present data available on epigenetics and circadian rhythms. Interestingly, we also gathered evidence from the available literature pinpointing towards the dynamic nature of chromatin architecture governed by long and short-range regulatory elements DNA contacts arising daily, that was thought to be steady otherwise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    170
    References
    3
    Citations
    NaN
    KQI
    []