Role of Domains 4 and 5 in Elongation Factor G Functions on the Ribosome

2000 
Abstract Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P i release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the α-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the α-sarcin stem-loop is required for EF-G release from the ribosome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    101
    Citations
    NaN
    KQI
    []