A Smart Theranostic Platform for Photoacoustic and Magnetic Resonance Dual-imaging-guided Photothermal-Enhanced Chemodynamic therapy

2020 
The use of smart theranostic agents in multimodal imaging and treatment is a promising strategy to overcome the limitations of single mode diagnosis and treatment, and can greatly improve the diagnosis and effects of treatment. In this study, a gold@manganese dioxide (Au@MnO2) core-shell nanostructure was designed as a glutathione (GSH)-triggered smart theranostic agent for photoacoustic and magnetic resonance (MR) dual-imaging-guided photothermal-enhanced chemodynamic therapy. Both in vitro and in vivo experiment demonstrated not only that the photoacoustic and MR imaging function of Au@MnO2 could be activated by an endogenous high GSH concentration, but also that after being triggered by the endogenous GSH, Au@MnO2 had an excellent synergistic treatment effect in photothermal-enhanced chemodynamic therapy under the guidance of photoacoustic and MR imaging. This study demonstrated that the use of GSH-triggered Au@MnO2 in photoacoustic and MR dual-imaging-guided photothermal-enhanced chemodynamic therapy is a smart theranostic nanoplatform for the accurate diagnosis and efficient treatment of cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    25
    Citations
    NaN
    KQI
    []