Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays

2007 
Using the finite-difference time-domain method we extract the effective optical constants of metallic nanoparticle arrays. We explore their behavior in the full range of filling fractions and find excellent agreement with the Maxwell-Garnett [Philos. Trans. R. Soc. London 203, 385 (1904)] effective medium theory for the effective dielectric constant. We also find that the resonance response of such systems exhibits an effective magnetic component, typically overlooked in standard effective medium theories. We verify that the description of these nanoarrays as an effective bulk medium is exact within numerical precision, at least in one-dimensional arrangements, by comparing with full simulations of more complex superlayer configurations. Finally, using the effective constants we study photonic crystal superstructures consisting of these arrays, demonstrating an interesting optical response where resonant absorption and reflection bands are separated by extremely sharp edges of almost 100% relative change ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    42
    Citations
    NaN
    KQI
    []