The frequency-dependent effect of electrical fields on the mobility of intracellular vesicles in astrocytes

2020 
Slow-wave sleep, defined by low frequency (<4 Hz) electrical brain activity, is a basic brain function affecting metabolite clearance and memory consolidation. The origin of low-frequency activity is related to cortical up and down states, but the underlying cellular mechanism of how low-frequency activities affect metabolite clearance and memory consolidation has remained elusive. We applied electrical stimulation with voltages comparable to in vivo sleep recordings over a range of frequencies to cultured glial astrocytes while monitored the trafficking of GFP-tagged intracellular vesicles using total internal reflection fluorescence microscopy (TIRFM). We found that during low frequency (2 Hz) electrical stimulation the mobility of intracellular vesicle increased more than 20%, but remained unchanged under intermediate (20 Hz) or higher (200 Hz) frequency stimulation. We demonstrated a frequency-dependent effect of electrical stimulation on the mobility of astrocytic intracellular vesicles. We suggest a novel mechanism of brain modulation that electrical signals in the lower range frequencies embedded in brainwaves modulate the functionality of astrocytes for brain homeostasis and memory consolidation. The finding suggests a physiological mechanism whereby endogenous low-frequency brain oscillations enhance astrocytic function that may underlie some of the benefits of slow-wave sleep and highlights possible medical device approach for treating neurological diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []