Funnel-metadynamics and solution NMR to estimate protein-ligand affinities.

2015 
One of the intrinsic properties of proteins is their capacity to interact selectively with other molecules in their environment, inducing many chemical equilibria each differentiated by the mutual affinities of the components. A comprehensive understanding of these molecular binding processes at atomistic resolution requires formally the complete description of the system dynamics and statistics at the relevant time scales. While solution NMR observables are averaged over different time scales, from picosecond to second, recent new molecular dynamics protocols accelerated considerably the simulation time of realistic model systems. Based on known ligands recently discovered either by crystallography or NMR for the human peroxiredoxin 5, their affinities were for the first time accurately evaluated at atomistic resolution comparing absolute binding free-energy estimated by funnel-metadynamics simulations and solution NMR experiments. In particular, free-energy calculations are demonstrated to discriminate ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    32
    Citations
    NaN
    KQI
    []