Compositional, Structural, Morphological, and Optical Properties of ZnO Thin Films Prepared by PECVD Technique

2021 
ZnO thin films were synthesized on silicon and glass substrates using the plasma-enhanced chemical vapor deposition (PECVD) technique. Three samples were prepared at substrates temperatures of 200, 300, and 400 °C. The surface chemical composition was analyzed by the use of X-Ray Photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were carried out by UV-visible spectroscopy. XPS spectra showed typical peaks of Zn(2p3/2), Zn(2p1/2), and O(1s) of ZnO with a slight shift attributed to the substrate temperature. XRD analysis revealed hexagonal wurtzite phases with a preferred (002) growth orientation that improved with temperature. Calculation of grain size and dislocation density revealed the crystallization improvement of ZnO when the substrate temperature varied from 200 to 400 °C. SEM images of ZnO films showed textured surfaces composed of grains of spherical shape uniformly distributed. The transmittance yields are reaching 80%, and the values of the band-gap energy indicate that the ZnO films prepared by PECVD present transparent and semiconducting properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []