Earth system feedbacks following large-scale tropical forestrestoration

2020 
Abstract. To achieve the Paris Agreement requires aggressive mitigation strategies alongside negative emission technologies. Recent studies suggest that increasing tree cover can make a substantial contribution to negative emissions, with the tropics being the most suitable region from a biogeophysical perspective. Yet these studies typically do not account for subsequent carbon cycle and climate feedback processes of large-scale land use change. Here we quantify the maximum potential temperature and CO2 benefits from pantropical forest restoration, including earth system feedbacks, using a fully-coupled, emission-driven Earth System Model (HadGEM2-ES). We perform an idealised experiment where all land use in the tropics is stopped and vegetation is allowed to recover, on top of an aggressive mitigation scenario (RCP 2.6). We find that tropical restoration of 1529 Mha increases carbon stored in live biomass by 130 Pg C by 2100 CE. Whilst avoiding deforestation and tropical restoration in the tropics removes 42 Pg C compared to RCP 2.6, feedback processes mean that carbon in the atmosphere only reduces by 18 Pg C by 2100. The resulting, small CO2 (9 ppm) benefit does not translate to a detectable reduction in global surface air temperature compared to the control experiment. The greatest carbon benefit is achieved 30–50 years after restoration before the Earth System response adjusts to the new land-use regime and declining fossil fuel use. We identify three model-independent key points: (i) the carbon benefit of restoration is CO2-scenario dependent, (ii) in a world that follows Paris Agreement emission cuts restoration is best deployed immediately, and (iii) the ocean carbon feedbacks will reduce the efficacy of negative emissions technologies. We conclude that forest restoration can reduce peak CO2 mid-century, but can only be a modest contribution to negative emissions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []