Feasibility of vitrification as a storage method for tissue-engineered blood vessels.

2006 
It is well established that, in multicellular systems, conventional cryopreservation results in damaging ice formation, both in the cells and in the surrounding extracellular matrix. As an alternative to conventional cryopreservation, we performed a feasibility study using vitrification (ice-free cryopreservation) to cryopreserve tissue-engineered blood vessels. Fresh, frozen, and vitrified tissueengineered blood vessels were compared using histological methods, cellular viability, and mechanical properties. Cryosubstitution methods were used to determine the location of ice in conventionally cryopreserved engineered vessels. Ice formation was negligible (0.0 ± 0.0% of vessel area) in the vitrified specimens, and extensive (68.3 ± 4.5% of vessel area) in the extracellular matrix of frozen specimens. The metabolic assay and TUNEL staining results indicated that vitrified tissue had similar viability to fresh controls. The contractility results for vitrified samples were >82.7% of fresh controls and, in mar...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    54
    Citations
    NaN
    KQI
    []