The role of CO2 in the dehydrogenation of n-octane using Cr-Fe catalysts supported on MgAl2O4

2021 
Abstract The effect of CO2 on the dehydrogenation of n-octane over Cr-Fe oxides supported on MgAl2O4 (MgAl) was investigated. Addition of Fe as a promoter facilitated the formation of Cr-O-Fe polymeric units, stabilizing the CrOx in the +3 state on the catalysts’ surface. Catalytic results revealed that the 2Cr-Fe catalyst was the most active and also stable (ca. 10 % CO2 conversion, 8 % n-octane conversion, 84 % selectivity to octene isomers) during a 30 h reaction. The stability and high octenes selectivity over this catalyst was reflected in its higher surface basicity. Based on a redox study using CO2, it was found that the dominant mechanism for CO2 activation was oxidative (Mars van Krevelen) over the monometallic Cr catalyst, while a non-oxidative (Reverse Water Gas Shift) mechanism applied over the nCr-Fe bimetallic catalysts. It is proposed that Cr-O-MgAl is the active site in the monometallic Cr catalyst, while the Cr-O-Fe polymeric units are the active sites in the bimetallic catalysts. Coke deposition was shown to be the major cause of deactivation of the catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []