Transition from Tunneling Leakage Current to Molecular Tunneling in Single-Molecule Junctions

2019 
Summary The tunneling leakage current will be a major quantum obstacle during miniaturization in the semiconductor industry down to the scale of several nanometers. At this scale, to promote charge transport and overcome the tunneling leakage current between the source and drain terminals, molecular electronic junctions offer opportunities by inserting molecules between these two electrodes. Employing a series of oligo(aryleneethynylene) (OAE) molecules, here we investigate the transition from tunneling leakage current to molecular tunneling in the single-molecule devices using a mechanically controllable break-junction technique, and the transition distances of the OAE molecular junctions were determined and even down to 0.66 nm for OAE2 molecular junction, which demonstrates that the intrinsic charge-transport properties of a single-molecule device can be outstripped from the tunneling leakage current. Consequently, molecular electronic devices show the potential to push the ultimate limit of miniaturization to the scale of several angstroms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    32
    Citations
    NaN
    KQI
    []