Enhancement of Brownian motion for a chain of particles in a periodic potential

2018 
: The transport of particles in very confined channels in which single file diffusion occurs has been largely studied in systems where the transverse confining potential is smooth. However, in actual physical systems, this potential may exhibit both static corrugations and time fluctuations. Some recent results suggest the important role played by this nonsmoothness of the confining potential. In particular, quite surprisingly, an enhancement of the Brownian motion of the particles has been evidenced in these kinds of systems. We show that this enhancement results from the commensurate effects induced by the underlying potential on the vibrational spectra of the chain of particles, and from the effective temperature associated with its time fluctuations. We will restrict our derivation to the case of low temperatures for which the mean squared displacement of the particles remains smaller than the potential period.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []