Graph spectral characterisation of the XY model on complex networks

2017 
There is recent evidence that the $XY$ spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work, we present a novel way to characterise the macroscopic states of the $XY$ spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From this decomposition, we produce spatial power spectra, which summarise the activation of structural modes by the non-linear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states are independent of the underlying networks and can thus be used as universal signatures for the macroscopic states. This work opens new avenues to analyse and characterise dynamics on complex networks using temporal Graph Signal Analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    11
    Citations
    NaN
    KQI
    []