miRNA analysis of Childhood Atopic Dermatitis reveals a role for miR-451a.

2020 
BACKGROUND MicroRNAs (miRNAs), important regulators of gene expression, have been implicated in a variety of disorders. The expression pattern of miRNAs in pediatric atopic dermatitis (AD) has not been well studied. OBJECTIVE We sought to investigate miRNA expression profiles in different blood compartments of infants with AD. METHODS Small RNA and HTG-Edge sequencing were performed to identify differentially expressed miRNAs in PBMCs and plasma of AD infants versus age-matched healthy controls, with reverse transcription quantitative real-time PCR used for validation and measurement of miRNA targets. Logistic regression models with AUROC estimation was used to evaluate the diagnostic potential of chosen miRNAs for AD. RESULTS RNA sequencing was performed to access miRNA expression profile in pediatric AD. We identified ten differentially expressed miRNAs in PBMCs and eight dysregulated miRNAs in plasma of AD infants compared to controls. Upregulated miRNAs in PBMCs included miRNAs known to be involved in inflammation: miR-223-3p, miR-126-5p and miR-143-3p. Differential expression of only one miRNA, miR-451a, was observed in both PBMCs and plasma of children with AD. Dysregulation of three miRNAs: miR-451a, miR-143-3p and miR-223-3p was validated in larger number of samples and miR-451a was identified as a predictive biomarker for the early diagnosis of the disease. Experimentally verified targets of miR-451a, IL6R and PSMB8, were increased in AD patients, negatively correlated with miR-451a levels and upregulated following inhibition of miR-451a in PBMCs. CONCLUSION In infants with AD, a distinct peripheral blood miRNA signature is seen, highlighting the systemic effects of the disease. miR-451a is uniquely expressed in different blood compartments of AD patients and may serve as a promising novel biomarker for the early diagnosis of AD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []