Nanostructured Si/C Fibers as a Highly Reversible Anode Material for All-Solid-State Lithium-Ion Batteries

2018 
This study demonstrates the application of Si/C composite fibers as anode materials for all-solid-state lithium-ion batteries. Using polyacrylonitrile as the carbon precursor, Si/C fibers were prepared through electrospinning and subsequent heat-treating processes. To investigate the correlation between fiber diameter and electrochemical performance, we prepared three electrodes (A, B, C), containing Si/C fibers with ~2 μm, ~1 μm and ~0.1 μm diameters, respectively. Our results revealed that although the composition of all three electrodes was nearly the same, the Si/C fiber based electrodes exhibited better capacity retention when their fiber diameters were smaller. Normalized to the total mass of electrode composite, the solid-state half-cell prepared with the smallest diameter (~0.1 μm) Si/C fibers achieved a reversible specific capacity of ~700 mAh g−1 (normalized to electrode mass) over 70 cycles. We believe that this report can serve as an informative approach toward the utilization of electrospun Si/C fibers as anode materials for all-solid-state lithium-ion batteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    5
    Citations
    NaN
    KQI
    []