Peripheral and Integral Membrane Binding of Peptides Characterized by Time-Dependent Fluorescence Shifts: Focus on Antimicrobial Peptide LAH4

2014 
Positioning of peptides with respect to membranes is an important parameter for biological and biophysical studies using model systems. Our experiments using five different membrane peptides suggest that the time-dependent fluorescence shift (TDFS) of Laurdan can help when distinguishing between peripheral and integral membrane binding and can be a useful, novel tool for studying the impact of transmembrane peptides (TMP) on membrane organization under near-physiological conditions. This article focuses on LAH4, a model α-helical peptide with high antimicrobial and nucleic acid transfection efficiencies. The predominantly helical peptide has been shown to orient in supported model membranes parallel to the membrane surface at acidic and, in a transmembrane manner, at basic pH. Here we investigate its interaction with fully hydrated large unilamellar vesicles (LUVs) by TDFS and fluorescence correlation spectroscopy (FCS). TDFS shows that at acidic pH LAH4 does not influence the glycerol region while at bas...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    19
    Citations
    NaN
    KQI
    []