Spherical fused silica cells filled with pure helium for nuclear magnetic resonance-magnetometry

2016 
High magnetic fields (>1 T) are measured by NMR magnetometers with unrivaled precision if the precessing spin sample provides long coherence times. The longest coherence times are found in diluted 3He samples, which can be hyperpolarized for sufficient signal strength. In order to have minimal influence on the homogeneity and value of the measuredmagnetic field, the optimal container for the 3He should be a perfect sphere. A fused silica sphere with an inner diameter of 8 mm and an outer diameter of 12 mm was made from two hemispheres by diffusion bonding leaving only a small hole for cleaning and evacuation. This hole was closed in vacuum by a CO2 laser and the inner volume was filled with a few mbars of 3He via wall permeation. NMR-measurements on such a sample had coherence times of 5 min. While the hemispheres were produced with <1 μm deviation from sphericity, the bonding left a step of ca. 50 μm at maximum. The influence of such a mismatch, its orientation, and the immediate environment of the sample is analyzed by FEM-simulations and discussed in view of coherence times and absolute field measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    8
    Citations
    NaN
    KQI
    []