Design, synthesis, and evaluation of potent novel peroxisome proliferator-activated receptor γ indole partial agonists

2019 
Abstract Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a nuclear receptor important for glucose homeostasis and insulin sensitivity. The anti-diabetic drugs thiazolidinediones improve insulin sensitivity by blocking PPARγ phosphorylation at S273; however, their full agonism on PPARγ also causes significant unwanted side effects. The indole derivative UHC1 displays insulin-sensitizing effect by acting as a partial agonist through the inhibition of PPARγ S273 phosphorylation, but without full agonist-associated side effects; however, its potency leaves much to be desired. Herein we report the design and synthesis of potent indole analogs as partial PPARγ agonists via the structure-activity relationship studies. Our studies revealed that vanillylamine and piperonyl benzylamine at Site 1 are favored to bind PPARγ with either biphenyl or 3-trifluoromethyl benzyl group at Site 2. In particular, compound WO91A with vanillylamine at Site 1 displays highly potent PPARγ binding affinity (IC50 =16.7 nM), over 30-fold more potent than the parental compound UHC1, yet with less side effect-associated transactivation activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    3
    Citations
    NaN
    KQI
    []