Compressional- and shear-wave studies of distributed acoustic sensing acquired vertical seismic profile data

2017 
Abstract Understanding the strengths and limitations of rapidly advancing distributed acoustic sensing (DAS) technology used for recording vertical seismic profile (VSP) data is achieved by comparing DAS and geophone data sets using both compressional-wave (P-wave) and shear-wave (S-wave) VSP data and their corresponding geophysical answer products. We validate the kinematics (time) and dynamics (amplitude) of DAS VSP data by examining the extracted slowness values, response-to-incident angles, corridor stacks, and common-depth-point (CDP) transforms. For kinematics validation, the slowness values computed from P- and S-wave components of DAS VSP data agree with the geophone slowness values. For dynamics validation, we confirm the cos2 θ response of the fiber to the incident angle of the seismic wavefield for P-waves and sin 2θ for S-waves. The amplitudes of the P-wave corridor stacks are comparable; the S-wave corridor stacks are similar for shallow events and differ for later events due to the limited r...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    18
    Citations
    NaN
    KQI
    []