Glutathione conjugation and protein modification resulting from metabolic activation of venlafaxine in vitro and in vivo.
2021
Venlafaxine (VLF), an antidepressant agent, is widely used to combat major depressive disorders, particularly for the treatment of selective serotonin reuptake inhibitor-resistant depression. VLF has been shown to cause liver injury. The present study aimed to investigate the metabolic activation of VLF and explore the mechanisms of hepatotoxicity induced by VLF.One glutathione (GSH) conjugate and one cysteine conjugate were both detected in mouse and human liver microsomal incubations containing VLF and GSH or cysteine. The two conjugates were also detected in cultured mouse primary hepatocytes and bile of rats after exposure to VLF. The in vitro and in vivo studies demonstrated that VLF was metabolized to a quinone methide intermediate reactive to GSH and cysteine residues of hepatic protein. The observed protein covalent binding revealed dose-dependency. The metabolic activation of VLF was P450-dependent, and CYP3A4 was found as the predominant enzyme involved in the bioactivation process.These findings facilitate better understanding of the metabolic activation-hepatotoxicity relationship of VLF and provide chemists with information about new potential structural alerts during drug design process.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
31
References
0
Citations
NaN
KQI