Static and dynamic culture of human endothelial cells encapsulated inside alginate-gelatin microspheres.

2021 
Abstract This study aimed to explore the angiogenesis potential of human endothelial cells encapsulated inside alginate-gelatin microspheres under static and dynamic culture systems after 7 days. Human umbilical vein endothelial cells were encapsulated inside alginate (1%) and gelatin (1.2%) using an electrostatic encapsulation method. Cells were incubated for 7 days in vitro. The cell survival rate was measured using the MTT assay. The expression of VEGFR-2 and von Willebrand factor genes was studied by real-time PCR assay. Using western blot analysis, we monitored the protein contents of VEGFR-2, vWF, and Caspase 3. The levels of SOD and GPx enzymes were calculated using biochemical kits. Angiogenesis potential was assessed using in vitro Matrigel assay. Data showed an increased survival rate in encapsulated cells cultured under the static condition compared to the conventional 2D condition (p  The current study suggests a bioreactor dynamic system is a reliable approach, similar to a static condition, for the expansion of encapsulated human ECs in a 3D milieu.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []