New insights into physiological effects of anoxia under darkness on the iconic seagrass Zostera marina based on a combined analysis of transcriptomics and metabolomics
2021
Abstract Coastal hypoxia/anoxia is a major emerging threat to global coastal ecosystems. Macroalgae blooms of tens of kilometers are often observed in open waters. These blooms not only cause a lack of oxygen, but also benthic light limitation. We explored the physiological responses of Zostera marina L. to anoxia under darkness. After exposing Z. marina to anoxia under darkness for 72 h, we measured the elongation of leaves and the decrease in maximal quantum yield of photosystem II (Fv/Fm), and investigated the transcriptomic and metabolomic responses to anoxic stress based on RNA-sequencing and liquid chromatography-mass spectrometry (LC-MS) technology. The results showed that anoxic stress significantly reduced the leaf Fv/Fm, and had a significant negative effect on the photosynthesis and growth of Z. marina. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of up-regulated differentially expressed genes (DEGs) showed that glycolysis was the most significant enrichment pathway (p
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
1
Citations
NaN
KQI