A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process

2020 
Development of viable cell estimation method without sacrificing proliferation and functions of cells cultured on regenerative biomaterials is essential for regenerative engineering. Cytotoxicity and depletion of resazurin are critical but often overlooked limitations that hindered applications of resazurin in viable cell estimation. The present work found that cytotoxicity and depletion of resazurin depended on cell concentration, resazurin concentration and resazurin incubation time. A simple strategy which only allowed cells to incubate with resazurin during each measurement was developed to eliminate negative effects of resazurin. This strategy was verified by monitoring proliferation of MC3T3-E1 preosteoblasts on poly(d,l-lactic acid) scaffold during a continuous 3D culture process for up to 21 days, comparing the accuracy with MTT assay which is a destructive assay with high sensitivity and accuracy and commonly used in regenerative engineering and comparing viability, proliferation and differentiation functions of MC3T3-E1, which were treated with/without this strategy for nondestructive evaluation. This method showed comparable linearity of standard curve and characteristics of growth curve to MTT assay. No major negative effects of this method on MC3T3-E1 viability and functions were found. Our work highlighted the importance of the concentration and incubation time of resazurin in designing application-specific nondestructive viability assay and would be helpful in improving the implanted medical devices as well as in regenerative engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    7
    Citations
    NaN
    KQI
    []