Subcellular fractionation of stored red blood cells reveals a compartment-based protein carbonylation evolution.

2012 
Abstract During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P  This article is part of a Special Issue entitled: Integrated omics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    50
    Citations
    NaN
    KQI
    []