Evaluating Architectures for Application-Specific Parallel Scientific Computing Systems

2008 
In this work, we examine the computational efficiency of scientific applications on three high-performancecomputing systems based on processors of varying degrees of specialization: an x86 server processor, the AMD Opteron; a more specialized System-on-Chip solution, the BlueGene/L and BlueGene/P; and a configurable embedded core, the Tensilica Xtensa. We use the atmospheric component of the global Community Atmospheric Model to motivate our study by defining a problem that requires exascale-class computing performance currently beyond the capabilities of existing systems. Significant advances in power-efficiency are necessary to make such a system practical to field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []