Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies.

2014 
The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a “perfect” copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies. Anat Rec, 297:1076–1089, 2014. © 2014 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    23
    Citations
    NaN
    KQI
    []