Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter

2018 
Abstract The lanthanide complexes [Yb(fac) 3 (H 2 O) 2 , Yb(tta) 3 (H 2 O) 2 , Nd(tta) 3 (H 2 O) 2 ] functionalized nanofibrillated cellulose (Ln-NFC) nanopapers with near-infrared (NIR) luminescence and high transparency are rapidly fabricated after solvent exchange using a simple suction filtration film-making method. The effects of NFC and lanthanide complexes content on their photophysical properties of Ln-NFC nanopapers and their mechanism of UV filters are fully investigated. With increasing lanthanide complexes content in the Ln-NFC nanopaper, their transmittances are gradually decreased while their NIR luminescences are obviously increased. Yb-fac NFC nanopaper has high UVB block rate at 298 nm, whereas the high UVA block ratio of Ln-tta NFC nanopaper is observed at 345 nm. Ln-NFC nanopapers show a much higher photostability without decomposition under UV irradiation at 365 nm over 5 h. The emission spectra of the Ln-NFC nanopaper process the NIR luminescence of the corresponding lanthanide ions through the efficient triplet–triplet energy transfer process. Ln-NFC nanopapers can bring a brilliant future for UV filters, labeling fields and marking soft materials application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    11
    Citations
    NaN
    KQI
    []