PMU Placement Optimization for Smart Grid Obvervability and State Estimation.

2018 
In this paper, phasor measurement unit (PMU) placement for power grid state estimation under different degrees of observability is studied. Observability degree is the depth of the buses' reachability by the placed PMUs and thus constitutes an important characteristic for PMU placement. However, the sole observability as addressed in many works still does not guarantee a good estimate for the grid state. Some existing works also considered the PMU placement for minimizing the mean squared error or maximizing the mutual information between the measurement output and grid state. However, they ignore the observability requirements for computational tractability and thus potentially lead to artificial results such as acceptance of the estimate for an unobserved state component as its unconditional mean. In this work, the PMU placement optimization problem is considered by minimizing the mean squared error or maximizing the mutual information between the measurement output and grid state, under grid observability constraints. The provided solution is free from the mentioned fundamental drawbacks in the existing PMU placement designs. The problems are posed as binary nonlinear optimization problems, for which this paper develops efficient algorithms for computational solutions. The performance of the proposed algorithms is analyzed in detail through numerical examples on large-scale IEEE power networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []