Enhanced Performance and Stability in DNA-perovskite Heterostructure based Solar Cells

2019 
Deoxyribonucleic acid (DNA) has been recently recognized as hole transport material apart from its well-known generic role. The promising long-range hole transport capability in DNA make it potential “molecular wire” in optoelectronics. Here, we demonstrate a core–shell heterostructure of perovskite wrapped by cetyltrimethylammonium chloride modified DNA (DNA-CTMA) through a self-assembly process. Such a design results in enhanced extraction and transport of holes in the bio-photovoltaic device and boosts the efficiency to 20.63%. The hydrophobicity of the DNA-CTMA shell surrounding the perovskite grain boundary is also found to enhance the device stability, as the corresponding cell retained over 90% of initial efficiency after long-term ambient exposure. Building upon the hole transport characteristics of DNA-CTMA, a hole-free device is fabricated that exhibits high power conversion efficiency but has 50 000% reduced cost. These results not only demonstrate breakthrough in designing cheap, efficient, an...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    20
    Citations
    NaN
    KQI
    []