High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting
2013
Si/ZnO core/shell nanowire (NW) arrays were fabricated using atomic layer deposition of ZnO shell on n-Si NW arrays prepared by metal assisted electroless etching method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were utilized to characterize the core/shell structures. Water splitting performance of the core/shell structures was preliminarily studied. The Si/ZnO core/shell NW arrays yielded significantly higher photocurrent density than the planar Si/ZnO structure due to their low reflectance and high surface area. The photoelectrochemical efficiency was found to be 0.035 and 0.002 % for 10 μm-long Si/ZnO NW array and planar Si/ZnO sample, respectively. These results suggested that core/shell structure is superior to planar heterojunction for PEC electrode design. We demonstrated the dependence of photocurrent density on the length of the core/shell array, and analyzed the reasons why longer NW arrays could produce higher photocurrent density. The relationship between the thickness of ZnO shell and the photoconversion efficiency of Si/ZnO NW arrays was also discussed. By applying the core/shell structure in electrode design, one may be able to improve the photoelectrochemical efficiency and photovoltaic device performance.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
14
Citations
NaN
KQI