Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors
2019
Reduced graphene oxide (RGO), atomically thin two-dimensional carbon nanosheets, owns outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These unique properties have made reduced graphene oxide an ideal platform for constructing a series of RGO-based functional nanomaterials. Specifically, RGO and RGO derivatives have been utilized as templates for the synthesis of various noble-metal/metal oxide nanocomposites. These hybrid nanocomposites materials are promising alternatives to reduce the drawback of using only transition metal nanoparticles in various applications, such as electrochemical energy storage and conversion technology of supercapacitors and fuel cells. The goal of this chapter is to discuss the state-of-the-art of reduced graphene oxide-based metal and metal oxide nanocomposites with a detailed account of their synthesis and properties. Especially, much attention has been paid to their synthesis and a wide range of applications in various fields, such as electrochemical and electrical fields. This chapter is presented first time with an introduction, followed by synthetic methods of RGO and RGO-based nanocomposites. Then, the application of this novel RGO/metal-metal oxide nanocomposites in fuel cells and supercapacitors are summarized and discussed. Finally, the future research trends and challenges of design and synthesis of RGO/metal-metal oxide nanocomposites are presented.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
148
References
2
Citations
NaN
KQI