Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy

2021 
Let $$\Omega \subset \mathbb {R}^3$$ be an open and bounded set with Lipschitz boundary and outward unit normal $$\nu $$ . For $$11 \quad \text {if }p = \frac{3}{2}. \end{aligned}$$ Specifically, there exists a constant $$c=c(p,\Omega ,r)>0$$ such that the inequality $$\begin{aligned} \Vert P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})}\le c\,\left( \Vert {{\,\mathrm{sym}\,}}P \Vert _{L^p(\Omega ,\mathbb {R}^{3\times 3})} + \Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^{r}(\Omega ,\mathbb {R}^{3\times 3})}\right) \end{aligned}$$ holds for all tensor fields $$P\in W^{1,\,p, \, r}_0({{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}; \Omega ,\mathbb {R}^{3\times 3})$$ . Here, $${{\,\mathrm{dev}\,}}X :=X -\frac{1}{3} {{\,\mathrm{tr}\,}}(X)\,{\mathbb {1}}$$ denotes the deviatoric (trace-free) part of a $$3 \times 3$$ matrix X and the boundary condition is understood in a suitable weak sense. This estimate also holds true if the boundary condition is only satisfied on a relatively open, non-empty subset $$\Gamma \subset \partial \Omega $$ . If no boundary conditions are imposed then the estimate holds after taking the quotient with the finite-dimensional space $$K_{S,dSC}$$ which is determined by the conditions $${{\,\mathrm{sym}\,}}P =0$$ and $${{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P = 0$$ . In that case one can replace $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{L^r(\Omega ,\mathbb {R}^{3\times 3})} $$ by $$\Vert {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P \Vert _{W^{-1,p}(\Omega ,\mathbb {R}^{3\times 3})}$$ . The new $$L^p$$ -estimate implies a classical Korn’s inequality with weak boundary conditions by choosing $$P=\mathrm {D}u$$ and a deviatoric-symmetric generalization of Poincare’s inequality by choosing $$P=A\in {{\,\mathrm{\mathfrak {so}}\,}}(3)$$ . The proof relies on a representation of the third derivatives $$\mathrm {D}^3 P$$ in terms of $$\mathrm {D}^2 {{\,\mathrm{dev}\,}}{{\,\mathrm{sym}\,}}{{\,\mathrm{Curl}\,}}P$$ combined with the Lions lemma and the Necas estimate. We also discuss applications of the new inequality to the relaxed micromorphic model, to Cosserat models with the weakest form of the curvature energy, to gradient plasticity with plastic spin and to incompatible linear elasticity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    145
    References
    4
    Citations
    NaN
    KQI
    []