Temperature Dependence of CN and SCN IR Absorptions Facilitates Their Interpretation and Use as Probes of Proteins.

2015 
Cyano and thiocyano groups have received attention as IR probes of local protein electrostatics or solvation, due to their strong absorptions and the ability to site specifically incorporate them within proteins. However, interpreting their spectra requires knowing whether they engage in hydrogen bonds (H-bonds). Existing methods for the detection of such H-bonding interactions are based on structural analysis or correlations between IR and NMR signals and are labor intensive and possibly ambiguous. Here, using model systems we show that the absorption frequency of both probes is linearly correlated with temperature and that the slope of the resulting line (frequency–temperature line slope or FTLS) reflects the nature of the probe’s microenvironment, including whether or not the probe is engaged in H-bonds. We then show that the same linear dependence is observed with p-cyano phenylalanine, cyanylated cysteine, or cyanylated homocysteine incorporated at different positions within the N-terminal Src homolo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []