Ontology-Based Probabilistic Estimation for Assessing Semantic Similarity of Land Use/Land Cover Classification Systems

2021 
To accurately and formally represent the historical trajectory and present the current situation of land use/land cover (LULC), numerous types of classification standards for LULC have been developed by different nations, institutes, organizations, etc.; however, these land cover classification systems and legends generate polysemy and ambiguity in integration and sharing. The approaches for dealing with semantic heterogeneity have been developed in terms of semantic similarity. Generally speaking, these approaches lack domain ontologies, which might be a significant barrier to implementing these approaches in terms of semantic similarity assessment. In this paper, we propose an ontological approach to assess the similarity of the domain of LULC classification systems and standards. We develop domain ontologies to explicitly define the descriptions and codes of different LULC classification systems and standards as semantic information, and formally organize this semantic information as rules for logical reasoning. Then, we utilize a Bayes algorithm to create a conditional probabilistic model for computing the semantic similarity of terms in two separate LULC land cover classification systems. The experiment shows that semantic similarity can be effectively measured by integrating a probabilistic model based on the content of ontology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []