Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap

2016 
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor(DG ASi NR FET)are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green’s function(NEGF) approach self-consistently coupled with a three-dimensional(3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASi NR FET. A novel two-parameter strain magnitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing Hf O2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance.Furthermore, a general model power(GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASi NR under strain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []