The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology toDementia in Lewy Body Disorders
2018
Parkinson’s Disease (PD) and the closely related Dementia with Lewy Bodies (DLB) are due to the accumulation of pathogenic alpha-synuclein protein in brain cells manifest by heterogeneous motor and non-motor symptoms, including cognitive impairment and dementia. The majority of patients with Parkinson’s Disease develop Dementia (PDD) in late stages of the disease and have widespread neocortical distribution of alpha-synuclein pathology at autopsy, compared with PD without dementia, in which neocortical synuclein pathology is less prevalent. These three entities PD, DLB and PDD comprise a clinical spectrum, collectively known as Lewy Body Disorders (LBD). Recent investigations into the neuropathological basis of LBD have demonstrated that while synuclein pathology is the defining feature of these disorders, it is often accompanied by other age-related neurodegenerative pathologies. In particular, amyloid plaque and tau tangle pathology characteristic of Alzheimer’s Disease (AD) (~50% of all LBD patients have sufficient pathology at autopsy for a secondary neuropathologic diagnosis of AD), appear to contribute to cognitive impairment in LBD, and the combination is associated with a shorter interval between onset of motor symptoms and development of dementia and a shorter life span. Further, the co-occurrence of neocortical alphasynuclein, tau and amyloid pathologies found at end-stage disease suggests a potential synergistic interaction of these individual pathologies in humans during life, mirroring experimental observations in animal and cell model systems that show how pathogenic species of synuclein fibrils can promote trans-synaptic spread of both tauopathy and synucleinopathy with strain-like properties. Newer post-mortem studies using digital methods to measure pathologic burden have highlighted distinct neocortical patterns of areas with relative higher density of tau pathology in LBD compared to AD that support these model data. The emerging field of cerebrospinal fluid and molecular imaging biomarkers of synuclein, amyloid and tau pathologies in LBD is contributing to a greater understanding of how the different pathologies evolve and interact to produce clinical heterogeneity in LBD. Future work to elucidate biologically meaningful clinical subgroups of synucleinopathy and its co-pathology must focus on the full clinicopathological spectrum of LBD and use validated biomarkers, when available, to design clinical trials based on the precise selection of homogeneous patient subgroups to maximize statistical power for detecting the impact of treatment.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
123
References
50
Citations
NaN
KQI