Design of Driveline Test Bench for Noise and Vibration Harshness Improvement of Automotive Chassis Components System

2013 
The test bench for handling the vibration input and output in a driveline is presented in this contribution. In the experiment, the rear subframe and propeller shafts and axle were composed and mounted with rubber mounts each other as a role of vibration absorbing function. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker moved only the upper and lower side excitation was taken. In particular, the torsional vibration due to fluctuating forced vibration excitation across the joint in between driveline and rear subframe was carefully examined. Accordingly, as the joint response was checked from experiments, the FE-simulation (finite element simulation) using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In the present study, a new test bench for measuring the vibration signal and simulating the vehicle chassis system is proposed. The modal value and the mode shape of all components were analyzed using the model to identify the important components affecting driveline noise and vibration. It can be concluded that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components for the improvement of NVH (noise and vibration harshness) problems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    1
    Citations
    NaN
    KQI
    []