Discrete Simulation of Cone Penetration in Granular Materials

2018 
The simulation of penetration problems into granular materials is a challenging problem as it involves large deformations and displacements as well as strong non-linearities affecting material behaviour, geometry and contact surfaces. In this contribution, the Discrete Element Method (DEM) has been adopted as the modelling formulation. Attention is focused on the simulation of cone penetration, a basic reconnaissance tool in geotechnical engineering, although the approach can be readily extended to other penetration problems. It is shown that DEM analysis results in a very close quantitative representation of the cone resistance obtained in calibration chambers under a wide range of conditions. DEM analyses also provides, using appropriate averaging techniques, relevant information concerning mesoscale continuum variables (stresses and strains) that appear to be in agreement with physical calibration chamber observations. The examination of microstructural variables contributes to a better understanding of the mechanisms underlying the observed effects of a number of experimental and analysis features of the cone penetration test.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []