Functional Maturation of Human iPSC-based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices
2019
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer tremendous potential for use in engineering human tissues for regenerative therapy and drug screening. However, differentiated cardiomyocytes are phenotypically immature, reducing assay reliability when translating in vitro results to clinical studies and precluding hiPSC-derived cardiac tissues from therapeutic use in vivo. To address this, we have developed hybrid hydrogels comprised of decellularized porcine myocardial extracellular matrix (dECM) and reduced graphene oxide (rGO) to provide a more instructive microenvironment for proper cellular and tissue development. A tissue-specific protein profile was preserved post-decellularization, and through the modulation of rGO content and degree of reduction, the mechanical and electrical properties of the hydrogels could be tuned. Engineered heart tissues (EHTs) generated using dECM-rGO hydrogel scaffolds and hiPSC-derived cardiomyocytes exhibited significantly increased twitch forces at 14 days of culture and had increased the expression of genes that regulate contractile function. Similar improvements in various aspects of electrophysiological function, such as calcium-handling, action potential duration, and conduction velocity, were also induced by the hybrid biomaterial. We also demonstrate that dECM-rGO hydrogels can be used as a bioink to print cardiac tissues in a high-throughput manner, and these tissues were utilized to assess the proarrhythmic potential of cisapride. Action potential prolongation and beat interval irregularities was observed in dECM-rGO tissues at clinical doses of cisapride, indicating that the enhanced maturation of these tissues corresponded well with a capability to produce physiologically relevant drug responses.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
98
References
3
Citations
NaN
KQI