Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

2017 
In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    5
    Citations
    NaN
    KQI
    []