Crystallization processes at the surface of polylactic acid—bioactive glass composites during immersion in simulated body fluid

2011 
We report on the crystallization processes occurring at the surface of PDLLA-Bioglass® composites immersed in simulated body fluid. Composites manufactured by injection molding and containing different amounts (0, 20, 30, and 50 wt %) of 45S5 Bioglass® particles were tested for durations up to 56 days and compared with Bioglass® particles alone. Crystallization processes were followed by visual inspection, X-ray diffraction (with Rietveld analysis) and scanning electron microscopy. Both calcite and hydroxyapatite were formed at the surface of all materials, but their relative ratio was dependent on the Bioglass® content and immersion time. Hydroxyapatite was always the major phase after sufficient immersion time, insuring bioactivity of such composites especially for Bioglass® content higher than 30 wt %. A scenario of crystallization is proposed. Rapid degradation of the composites with 50 wt % was also observed during immersion. Therefore, composites with 30 wt % of Bioglass® particles seem to exhibit the best balance between bioactivity and stability at least during the first weeks of immersion in contact with body fluids. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    12
    Citations
    NaN
    KQI
    []