Josephson oscillations in a room-temperature Bose-Einstein magnon condensate
2019
The alternating current (ac) Josephson effect in a time-independent spatially-inhomogeneous setting is manifested by the occurrence of Josephson oscillations - periodic macroscopic phase-induced collective motions of the quantum condensate. So far, this phenomenon was observed at cryogenic temperatures in superconductors, in superfluid helium, and in Bose-Einstein condensates (BECs) of trapped atoms. Here, we report on the discovery of the ac Josephson effect in a magnon BEC carried by a room-temperature ferrimagnetic film. The BEC is formed in a parametrically populated magnon gas in the spatial vicinity of a magnetic trench created by a dc electric current. The appearance of the Josephson effect is manifested by oscillations of the magnon BEC density in the trench, caused by a coherent phase shift between this BEC and the BEC in the nearby regions. Our findings advance the physics of room-temperature macroscopic quantum phenomena and will allow for their application for data processing in magnon spintronics devices.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
5
Citations
NaN
KQI