Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade

2016 
Immune checkpoint blockade represents a major breakthrough in cancer therapy, however responses are not universal. Genomic and immune features in pre-treatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of metastatic melanoma patients initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade (n=53) followed by programmed death-1 (PD-1) blockade at progression (n=46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In these studies, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade, and also demonstrate differential effects on the tumor microenvironment induced by CTLA-4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. Significance: These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade, and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine, and should be explored in immune checkpoint blockade treatment across cancer types.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    545
    Citations
    NaN
    KQI
    []