Island Partition of Distribution System with Distributed Generators Considering Protection of Vulnerable Nodes

2017 
To improve the reliability of power supply in the case of the fault of distribution system with multiple distributed generators (DGs) and reduce the influence of node voltage fluctuation on the stability of distribution system operation in power restoration, this paper proposes an island partition strategy of the distribution system considering the protection of vulnerable nodes. First of all, the electrical coupling coefficient of neighboring nodes is put forward according to distribution system topology and equivalent electrical impedance, and the power-dependence relationship between neighboring nodes is calculated based on the direction and level of the power flow between nodes. Then, the bidirectional transmission of the coupling features of neighboring nodes is realized through the modified PageRank algorithm, thus identifying the vulnerable nodes that have a large influence on the stability of distribution system operation. Next, combining the index of node vulnerability, an island partition model is constructed with the restoration of important loads as the primary goal. In addition, the mutually exclusive firefly algorithm (MEFA) is also proposed to realize the interaction of learning and competition among fireflies, thus enhancing the globally optimal solution search ability of the algorithm proposed. The proposed island partition method is verified with a Pacific Gas and Electric Company (PG and E) 60-node test system. Comparison with other methods demonstrates that the new method is feasible for the distribution system with multiple types of distributed generations and valid to enhance the stability and safety of the grid with a relatively power restoration ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []