Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting.

2014 
Microfluidics based continuous cell electroporation is an appealing approach for high-throughput cell transfection, but cell viability of existing methods is usually compromised by adverse electrical or hydrodynamic effects. Here we present the validation of a flow-through cell electroporation microchip, in which dielectrophoretic force was employed to sort viable cells. By integrating parallel electroporation electrodes and dielectrophoresis sorting electrodes together in a simple straight microfluidic channel, sufficient electrical pulses were applied for efficient electroporation, and a proper sinusoidal electrical field was subsequently utilized to exclude damaged cells by dielectrophoresis. Thus, the difficulties for seeking the fine balance between electrotransfection efficiency and cell viability were steered clear. After careful investigation and optimization of the DEP behaviors of electroporated cells, efficient electrotransfection of plasmid DNA was demonstrated in vulnerable neuron cells and s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    24
    Citations
    NaN
    KQI
    []