Noise Measurement and Reduction in Mode-Locked Lasers: Fundamentals for Low-Noise Optical Frequency Combs

2021 
After five decades of development, mode-locked lasers have become significant building blocks for many optical systems in scientific research, industry, and biomedicine. Advances in noise measurement and reduction are motivated for both shedding new light on the fundamentals of realizing ultra-low-noise optical frequency combs and their extension to potential applications for standards, metrology, clock comparison, and so on. In this review, the theoretical models of noise in mode-locked lasers are first described. Then, the recent techniques for timing jitter, carrier-envelope phase noise, and comb-line noise measurement and their stabilization are summarized. Finally, the potential of the discussed technology to be fulfilled in novel optical frequency combs, such as electro-optic (EO) modulated combs, microcombs, and quantum cascade laser (QCL) combs, is envisioned.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    177
    References
    1
    Citations
    NaN
    KQI
    []